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Wiener proposed that the turbulent velocity be expanded in Hermite functionals 
of a Gaussian white noise random function advected by the fluid. This paper 
describes the mechanics of converting his suggestion into a computable model, 
and assesses its range of validity as an approximation for incompressible, homo- 
geneous, and isotropic turbulence. The terms retained are a linear term, vl, 
representing an arbitrary Gaussian velocity, and a quadratic term, v2, represent- 
ing a non-Gaussian contribution to the velocity needed for energy transfer. 
The requirement that advection by the dependent velocity v = v1 + v2 does not 
alter the statistics of the base necessitates a further truncation of the base to 
antisymmetric quadratic basis elements. Realizability of any statistics of v 
is common to all Wiener-Hermite expansions. The projected equations for the 
Lagrangian expansion conserve energy by non-linear interaction, preserve the 
inviscid Gaussian equipartition ensemble, and are invariant to random Galilean 
transformations. Numerical calculations with an approximate form of these 
equations reveal that irreversible relaxation to the inviscid equipartition solu- 
tion is not a property of the Lagrangian model, and that the rapid convergence 
advanced as the original motivation for studying Wiener-Hermite expansions 
does not survive closure by truncation. The dynamics of the model is not in- 
consistent with the existence of an inertial range. A simple numerical search 
routine failed to produce a solution corresponding to such an equilibrium 
ensemble. 

Wiener (1958, pp. 118-128) proposed a simple Lagrangian theory of turbulence 
in which the turbulent velocity fields are expanded in Hermite functionals of a 
Gaussian white noise random function advected by the fluid. The significance 
of Wiener’s ideas was recognized in a series of papers by Siegel & Meecham 
(1959), Meecham & Siegel (1959, 1964), Imamura, Meecham & Siegel (1965), 
Siegel, Imamura & Meecham (1965) and Meecham & Jeng (1968) in which was 
developed a fixed base expansion applicable to fluid turbulence. They and their 
students, Su (1967) and Kahng (1968), applied the theory to the Burgers model 
and in approximate form to fluid turbulence. Despite the optimistic tone of 
Saffman’s (1968) introduction to this version of the theory, it has serious flaws 
which have been pointed out by Orszag & Bissonnette (1967) and Crow & 
Canavan (1967). 
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Some of the flaws which render the stationary base expansion invalid as an 
approximation to high Reynolds number turbulence are overcome by the ex- 
pansion in an advected base which Wiener originally proposed. This paper pre- 
sents the equations for Wiener’s Lagrangian expansion, examines their analytical 
and numerical predictions, and assesses their range of validity as an approxima- 
tion for incompressible, homogeneous, and isotropic turbulence. The model 
guarantees certain realizability and consistency properties which have eluded 
some other straightforward theories. It offers a novel solution to the closure 
problem encountered in treating non-linear problems statistically, but one which 
leads to difficulties in numerical calculations. 

A number of mathematical problems are avoided by using a wave-vector 
space representation and treating quantities defined on the discrete array of 
wave vectors 

(1)  
2n 

k =  -m; 
L mi= 0, f 1 ,  5 2 ,  ..., 

corresponding to flows cyclic in cubes of side L. In  this representation Gaussian 
white noise is a complex random vector field so defined (Canavan & Leith 1968) 
as to have the two point joint statistics 

{n,(k)nj(k’)) = SijS(l<+ k’), 
S(0) = 1; S(k) = 0, k $- 0, 

in terms of which all higher moments of the noise can be written. The linear and 
quadratic Hermite polynomials 

(3) 1 h:(k, t )  = n,(k, t ) ,  

h,j( k ,m,t )  = n,(k,t)nj(m,t)-SijS(k+m) 

can then be used to write the expansion of the velocity 

vi(k,  t )  = vi(k, t )  + @(k, t )  
‘I (4) J K;jk(k’, k”, t )  hi,(k, k ,  t ) ,  - - Kf.(k, v t)hi(k,  t )  + 

k’i k = k  

which is appropriate to homogeneous turbulence. In  this expansion the random- 
ness of the velocity, and part of its time dependence, are carried by the noise base. 
The iron-random kernels in the expansion, K1 and K 2 ,  determine directly all 
simultaneous statistics of the velocity. They are taken to have the isotropic tensor 
symmetries (Batchelor 1953, pp. 40-54) 

Ktj(k) = K:,(k) = K$( - k), K&(k, m) = - K&k( - k, - m). 
Incompressibility dictates that 

kiKij(k)  = 0, (ki+mi)K:jk(k,m) = 0. 

The linear term describes an arbitrary Gaussian velocity field. The quadratic 
term represents a lion-Gaussian contribution to the velocity needed for energy 
transfer. The truncation of the expansion to two terms is dictated by practical 
computability. The use of an advected base does not, of course, alter the realiz- 
ability property common to all Wiener-Hermite expansions (Meecham & Jeng 
1968). 
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The expansion is Lagrangian in that each sample noise function n(k ,  t )  is 
constrained to evolve under the wave-vector space advection equation 

hi(k, t )  = - ik, ni(k’, t )  w m ( k ,  t )  
k ’ + k = k  

( 5 )  

with v given by the expansion of (4). Thus, the base is imbedded in and moves 
with the fluid. Since the simple statistics of the noise motivates its choice as the 
basis for the expansion in the first place, it  is essential that the time dependence 
of each noise function does not destroy those statistics. Canavan & Leith (1968) 
show that this requirement is satisfied if the additional antisymmetry 

KZ. 3 am (k ,  m) = -K;,i(k, m) (6) 

is imposed on K2. This corresponds to a further truncation of the base which 
retains quadratic elements of the form 

gq,(k, m) = &[h;j(k,m)-h,2(k, m)]. ( 7 )  

For such a second kernel, advection of the noise by the statistically dependent 
velocity of (4) does not alter the white Gaussian statistics of the noise ensemble. 
It should be noted that a truncation to antisymmetric quadratic basis elements 
produces a null theory of the Burgers turbulence. 

Substitute the expansion of the velocity, (4), into the incompressible Navier- 
Stokes equations and take moments with hl and g2 to arrive at  non-random 

The terms A ,  D and E which contain convolutions arise from the motion of the 
base. These equations differ from those of Canavan & Leith (1968) only by the 
replacement of K 2  by the isotropic pseudotensor L2 

G,(m, 4 = knjk~qj,c(m, 4, (10) 

the dropping of superscripts from K1 and L2, and the replacement of sums by 
integrals in the limit required for strict consistency with the assumption of iso- 
tropy. 
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The equations for the Lagrangian expansion exhibit several of the consistency 
properties discussed by Orszag & Kruskal (1968), Orszag (1970). In  particular, 
they conserve energy through non-linear interaction, preserve the inviscid 
Gaussian equipartition ensemble and are invariant to random Galilean 
transformations. Energy conservation, for u = 0 ,  follows by differentiating 
the expression for the spectral energy density 

E(k) = iKv,(k) Vi (  - k))  
= $(vi(k)vi( - k))  + i(v:(k)v!( - k)) 

= E1(k) + E2(k) (11) 

with respect to time, substituting for K and L from (8) and (9), summing over 
k, and using 

2 dmLi,(m,k-m)Eij(m,k-m) = Kii(k)A,(k), s 
2 dk dmLLj(m, k - m) &,.(m, k - m) = dkKf.(k) Gj(k), s s  s 

dmLLj(m,k-m)DLj(m,k-m) = 0 = dk dmL,j(m,k-m)Gij(m,k-m), s s s  
to show that fdk [@(k) + g2(k)] = 0. 

The Gaussian equipartition ensemble (Kraichnan 1958) has the Wiener-Hermite 
expansion 

&(k) = G,(k), &(m, n) = 0. 

For this choice of kernels (9), upon manipulation, yields E = F ,  so that L 
vanishes and this equilibrium ensemble is a stationary solution of the Lagrangian 
model. 

Statistical Galilean invariance, the invariance of the dynamics of a turbulence 
theory to the inclusion of random uniform advecting velocities, has been discus- 
sed by Kraichnan (1964) and Orszag & Kruskal (1968) as a prerequisite to con- 
sistency with Kolmogorov's scaling arguments. Gaussian, vl(0), and non- 
Gaussian, v2(0), random Galilean transformations would be represented in the 
dynamics of the Lagrangian model by terms involving K,(O) and L,(k, - k) 
respectively. Inspection of the k equation (8) shows, however, t ha t  the terms 
involving vl(0) cancel between A and C and that the term in C involving '"0.) 
vanishes by isotropy and incompressibility. Similarly, inspection of the L 
equation (9) shows that E and P cancel when m or n = 0, so that v'(0) makes 
no contribution to L, and that the 1 = n and 1 = m terms of D cancel with the 
1 = - m and 1 = n terms of G, so that v2(0) makes no contribution. The use of a 
base imbedded in the fluid removes, as expected, the effects of any random uni- 
form velocity from the dynamics of the Lagrangian expansion. 

The equations which result from deleting D and G from the & equation (9) 

Kij(k) + vk2Kij(k) +Aij(k) = C&(k), 
2Li,(m, n) + 2uk2Ltj(m, n) + Eij(m, n) = Ej(m, n), 

(13) 

(14) 
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form a simpler set sharing the invariance and consistency properties of the Lag- 
rangian model. Their solutions illustrate two important properties of time- 
dependent solutions of the full set. The first is that irreversible relaxation to the 
inviscid Gaussian equipartition solution (Kraichnan 1958, Orszag 1970) is not 
a property of either the simpler closure or the Lagrangian model. Modes per- 
turbed from their equipartition levels oscillate about them with a frequency 
related to advective effects. This non-relaxation of departures from equipartition 
is demonstrated in numerical calculations with the simpler set but should not be 
qualitatively altered by reintroducing D and C. They are quadratic in pertur- 
bation quantities and hence legitimately ignored in this situation. 

Radial wave-number 

FIGURE 1. Distributions of En(kL, t = 1*5L/U), normalized by LU2,  which evolve from 
Gaussian initial conditions of equat8ion (15) under equations (13) and (14). 

The second feature demonstrated by solutions of the simpler set is that the 
rapid convergence advanced (Meecham & Jeng 1968) as the original motivation 
for studying Wiener-Hermite expansions is lost in truncation. From the initial 
conditions 

E(k,t = 0) = El(k, 0) = 4nk2E1(k, 0) = 2n-%UJ2(kL)2exp( - (kL)2), (15) 

the equations produce the energy spectra of v1 and v2 shown in figure 1 at t = 1.5 
LIU. Since P ( k )  > E1(k) for k > 2, v2(k) cannot be regarded as a perturbation 
on a dominant Gaussian vl(k) for such modes. The cause of this divergence is 
the lack of a mechanism in the L equation (14) for relaxing triple correlations 
built up by non-equipartition initial conditions. Thus, the form 

Lij(m, n, t)  M +t[qj(m, n, 0) - Eii(m, n, O ) ] ,  (16) 
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which is certainly valid for t < L / U  also holds approximately for t 2 L/U, 
predicting correctly the shape of E2(k) shown in figure 1 as well as the fact that 

E2(k , t )  > E1(k , t )  for t > n-/kU, (17) 

which is observed in computations. These calculations ignore the relaxation of 
correlations by molecular viscosity. I ts  inclusion, however, is only capable 
of preventing divergences for Reynolds numbers < 2. 

The unphysical behaviour which invalidates quantitative predictions of the 
simpler closure is not necessarily met in the Lagrangian model. When 
E2(k)  M E1(k) ,  D and Gin the L equation (9) are as large as E and F ,  so that their 
inclusion may eliminate the secular growth of L. This demonstrates, however, 
that even the Lagrangian model will not retain the ordering 

E1(k)  9 E 2 ( k )  B E3(k) B ... 
implicitly assumed in truncating the expansion of v to  two terms. 

Since the unique feature of the expansion under discussion is its Lagrangian 
nature, it is appropriate to test the model’s high Reynolds number dynamics 
in a Kolmogorovian inertial range. The time independent, self-similar forms of 
thc kernels appropriate to such an equilibrium ensemble 

Kij(ak) = a-”Kij(k), Lij(am, an) = a-(”+8)Lfj(rn, n), z = 11- 6 (18) 

greatly simplify this investigation. While the inertial range form of K is com- 
pletely determined by its isotropic form and scaling properties, that of the second 
kernel is not. An approximate form 

- 
Lij(m, k-m) = 7[l$(m,k-m)-Ei.(rn,k-m)], rcck”-$, (19) 

is obtained by formally integrating the L equation (9) from Gaussian initial 
conditions over a time r which produces the scaling of (18), following a procedure 
due to  Orszag & Kruskal (1968). Using these forms of K and to  perform the 
integrals in the evolution equations (8) and (9) at an inertial range wavevector 
k leads to no divergences, demonstrating that the model is not inconsistent with 
the existence of an inertial range. It also verifies, however, that the approxi- 
mate form zgiven by (19) does not produce either I? = 0 or = 0. A stationary 
form of L is sought by a variational procedure. Suitable reduction tensors R 
and S are constructed (appendix) so that the inertial range scalar generating 
functions of L may be obtained by contraction 

for m + n = k, I kl = 1, as are generating tensors W and X so that L may be 
reconstructed from them 
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m + n = k, any k. The scalar generating functions are defined by their values 
on a rectangular array of points in the m, n plane, values a t  intermediate points 
needed to perform the integrals in (8) and (9) being found by linear interpolation. 
By systematically varying the values of the functions on the array of points, a 
form of L is sought which minimizes L over the array subject to K = 0. This part 
of the investigation was unsuccessful. No choice of parameters produced a solu- 
tion significantly better than the trivial one. No claims are made that the results 
were insensitive to  the crude differencing involved in specifying L by two to six 
numbers, but such a sensitivity is in itself a failure for a statistical theory. 

In  conclusion, the use of advected Gaussian white noise as the basis for a 
Lagrangian expansion has been shown to produce a computable model of tur- 
bulence with several desirable consistency properties, but numerical evidence 
makes it appear unlikely that the Lagrangian expansion as formulated here can 
be regarded as a useful approximation for turbulence. 
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Appendix 
Proudman & Reid (1954) give the most general isotropic tensor funciton of 

two wave-vector arguments and three tensor subscripts. Owing to the symmetries 
expressed in (4) and (6) together with those dictated by isotropy and incom- 
pressibility it may be written as 

Kt,(m,n) = p,l(m+n)[$(m,n, k)(nznjm,-n,mjn,) 

-4(m,n,k)(m,6zi-mjS,,)+~(n,m,k)(n,6~i-n,S,,)I, 

where $ and 4 are arbitrary functions of m, n, and k = Ikl = Im+nl which 
satisfy $(m, n, k) = - $(n, m, k). Define 

q m ,  n) = ~jrsmrns ,  

M,(m, n) = %sWm, n)ks, 

Kj(m,n) = - (I/k2)Mi(m,n)i'$(m,n), 

X,j(m, n) = Gs(m + n)%jr% 
Rij(m, n) = - (M,N;. + N,Mj)/N4,  

XLj(m,n) = -N,nj/N2, 

and in terms of them 
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then (20)-(22) follow from a simple computation. Contract R and S with the 
approximate z of (19) to obtain 

- 
7km7 n7 k )  = 0, 

where U ( k )  cc k-" is the scalar generating function for K1. This result shows that 
q5 is excited by terms quadratic in K 1  in the f; equation (9)7 and that $ is then 
produced by the terms quadratic in L. Only 5 is used in examining the equations 
for the Lagrangian expansion for divergences in an inertial range. Essential 
features of this examination are the cancellation between F and E for m --g k 
which leads to a form of scaling less strongly on m than that which would evolve 
from either term alone, and a similar cancellation between G and D which 
prevents the alteration of this scaling by the terms quadratic in z, 
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